VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Tremont (906c0); 2021 Intel Celeron N4500; 2 x 1100MHz; jasper2, supercop-20240909

[Page version: 20241006 02:11:52]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
347233538036188
T:
jacfp127i
365633713537997
T:
kumjacfp127g
408554167143016
T:
prjfp127i
427714372645504
T:
hecfp127i
499795032251046
T:
curve2251
502025070551451
T:
jacfp128bk
522325250152941
T:
gls254
539515439854789
T:
gls254prot
604766160363318
T:
hecfp128bk
605326176163523
T:
hecfp128i
608806196963260
T:
prjfp128bk
608966203063482
T:
hecfp128fkt
677196782367994
T:
k277taa
761177673777675
T:
k298
981059848498846
T:
k277mon
100173101544102857
T:
gls1271
153419153898154185
T:
kumfp127g
219062219209219514
T:
kumfp128g
240885241081241357
T:
curve25519
303744304248304553
T:
ed448goldilocks
319687319897320159
T:
kummer
326575329669332616
T:
sclaus1024
343643344187344684
T:
nistp256
597489600043601289
T:
surf2113
174684017479171749222
T:
ed521gs
176223217756811786995
T:
sclaus2048
196664719713401976803
T:
claus
197713219795281981886
T:
nist521gs
Cycles to compute a shared secret
25%50%75%system
514455164352015
T:
gls254
538745435554932
T:
gls254prot
676236772667852
T:
k277taa
758907645377191
T:
k298
979759820298434
T:
k277mon
156512157073157437
T:
kumfp127g
159567159848160076
T:
kumjacfp127g
159327159921160468
T:
jacfp128bk
193029193210193542
T:
curve2251
199835200290200872
T:
prjfp128bk
205813205963206679
T:
hecfp128bk
213322214597215979
T:
hecfp128fkt
227240227905228085
T:
kumfp128g
240451240735241428
T:
jacfp127i
240759240980241189
T:
curve25519
238332243332247468
T:
gls1271
312572312954313507
T:
prjfp127i
319732319884320072
T:
kummer
322943323251323823
T:
hecfp127i
331483331823332287
T:
sclaus1024
462344462898463703
T:
hecfp128i
595137598700599418
T:
surf2113
100312810031921003963
T:
ed448goldilocks
118837511894351190974
T:
nistp256
174726317485851750514
T:
ed521gs
176915017760881784309
T:
sclaus2048
196102019643201978572
T:
claus
197208119742701976511
T:
nist521gs