VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Sandy Bridge+AES (206a7); 2011 Intel Xeon E3-1225; 4 x 3100MHz; hydra7, supercop-20240909

[Page version: 20241006 02:11:52]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: old (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
316363202432742
T:
jacfp127i
327493325834026
T:
kumjacfp127g
379413848838947
T:
hecfp127i
378553851239320
T:
prjfp127i
459194635546979
T:
jacfp128bk
558245641457289
T:
hecfp128i
556965649257368
T:
hecfp128bk
557905652757484
T:
hecfp128fkt
556205669158033
T:
prjfp128bk
604966106662304
T:
curve2251
747337600677072
T:
gls254
895408958489670
T:
kummer
102156103916105338
T:
gls1271
121246121394121535
T:
gls254prot
125771125858127904
T:
kumfp127g
147198147339147675
T:
curve25519
173486173570173663
T:
k277taa
182628182708182975
T:
k298
184597185477185746
T:
kumfp128g
214842215304217577
T:
ed448goldilocks
257978258054258360
T:
k277mon
285935288667291868
T:
sclaus1024
351564351739351968
T:
nistp256
630495633491635495
T:
surf2113
121178212129881214514
T:
ed521gs
146087414783091536648
T:
sclaus2048
171402517186831722430
T:
claus
Cycles to compute a shared secret
25%50%75%system
702867185673855
T:
gls254
893138936589408
T:
kummer
121064121106121196
T:
gls254prot
127841127941128106
T:
kumfp127g
131585131679131781
T:
kumjacfp127g
140783140885141039
T:
jacfp128bk
158850158943159679
T:
curve25519
173279173325173418
T:
k277taa
178768179024179504
T:
prjfp128bk
182634182772183007
T:
k298
183018183278183494
T:
hecfp128bk
190055190198190435
T:
hecfp128fkt
191038191787192255
T:
kumfp128g
200560200815201057
T:
jacfp127i
227409230768231174
T:
curve2251
257995258046258173
T:
k277mon
260618260940261421
T:
prjfp127i
254645262017266302
T:
gls1271
265194265762271136
T:
hecfp127i
293391295194295513
T:
sclaus1024
414223414771415461
T:
hecfp128i
625490631600637431
T:
surf2113
653458654592655309
T:
ed448goldilocks
121954112204341221326
T:
nistp256
122168512236021225562
T:
ed521gs
148742714894891544584
T:
sclaus2048
171695717186321725688
T:
claus