VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Sandy Bridge (206a7); 2011 Intel Core i3-2310M; 2 x 2100MHz; h6sandy, supercop-20240909

[Page version: 20241011 15:42:01]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: old (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
319963267733489
T:
jacfp127i
330013371635413
T:
kumjacfp127g
372053813139190
T:
prjfp127i
378793848039275
T:
hecfp127i
469204761348389
T:
jacfp128bk
568865809359268
T:
hecfp128fkt
572085827659547
T:
hecfp128bk
575735847859487
T:
prjfp128bk
576515888160543
T:
hecfp128i
601066081162939
T:
curve2251
894128948089616
T:
kummer
100764102406103825
T:
gls1271
116641116930117365
T:
gls254
121113121221121443
T:
gls254prot
124736124865125060
T:
kumfp127g
147102147217147335
T:
curve25519
176951177059177459
T:
k277taa
182675183117183928
T:
k298
184277184917185202
T:
kumfp128g
217366217911218631
T:
ed448goldilocks
258066258276259302
T:
k277mon
287529289791292751
T:
sclaus1024
353097353315353507
T:
nistp256
629722633064642245
T:
surf2113
121513112177141222622
T:
ed521gs
146182314711971483301
T:
sclaus2048
171710517217891725690
T:
claus
Cycles to compute a shared secret
25%50%75%system
891798921889301
T:
kummer
115541115600116048
T:
gls254
121027121121121215
T:
gls254prot
126910127071127520
T:
kumfp127g
131618131896132436
T:
kumjacfp127g
140820141258142844
T:
jacfp128bk
159092159146159228
T:
curve25519
176814176913177167
T:
k277taa
178841179133179519
T:
prjfp128bk
182501182738183342
T:
k298
182897183047183258
T:
hecfp128bk
190184190353190760
T:
hecfp128fkt
191439191834192183
T:
kumfp128g
200670200960201374
T:
jacfp127i
230768231214233134
T:
curve2251
246433248617253088
T:
gls1271
257980258036258619
T:
k277mon
260386260960261594
T:
prjfp127i
265680266095267197
T:
hecfp127i
289978292228297431
T:
sclaus1024
414397415618417148
T:
hecfp128i
631380634044642410
T:
surf2113
654563655750667789
T:
ed448goldilocks
122278812235531224800
T:
nistp256
122620512279591231808
T:
ed521gs
146580414691001472380
T:
sclaus2048
171278917168591718021
T:
claus