VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; K10 45nm (100f63); 2010 AMD Athlon II Neo K125; 1 x 1700MHz; h3neo, supercop-20240909

[Page version: 20241011 15:42:01]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: old (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
323543260332920
T:
jacfp127i
349343519835633
T:
kumjacfp127g
384013872438993
T:
prjfp127i
384423873039050
T:
hecfp127i
515775244553281
T:
jacfp128bk
599716073961517
T:
prjfp128bk
603086097561683
T:
hecfp128i
605206122762055
T:
hecfp128fkt
605496129861997
T:
hecfp128bk
112483113460114471
T:
gls1271
131115131120131215
T:
kumfp127g
218982218983219073
T:
curve25519
224562224606224693
T:
kumfp128g
263921265804268444
T:
sclaus1024
342510342751343734
T:
ed448goldilocks
438752438752438865
T:
kummer
441801442076442582
T:
nistp256
108330310887601091883
T:
surf2113
128180512915261301063
T:
sclaus2048
133361013383281339748
T:
curve2251
155549515558461557154
T:
ed521gs
156850115716431576564
T:
claus
Cycles to compute a shared secret
25%50%75%system
132634132635132641
T:
kumfp127g
134338134338134342
T:
kumjacfp127g
163439163559163730
T:
jacfp128bk
201163201174201229
T:
prjfp128bk
206131206237206892
T:
hecfp128bk
212488212587212866
T:
jacfp127i
213916213928214316
T:
hecfp128fkt
218951218954218956
T:
curve25519
230022230023230024
T:
kumfp128g
264096268135273861
T:
sclaus1024
269675270514275905
T:
gls1271
271967272033272094
T:
prjfp127i
281518281538281554
T:
hecfp127i
438607438710438716
T:
kummer
454596454779455023
T:
hecfp128i
943629944579945437
T:
ed448goldilocks
108830810905391091117
T:
surf2113
127936612987951308921
T:
sclaus2048
133810013387951339289
T:
curve2251
148325614837281487179
T:
nistp256
155520615555991555693
T:
ed521gs
156922915761221577293
T:
claus