VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Gracemont (906a4-20); 2022 Intel Core i3-1215U, E cores; 4 x 1600MHz; alder2,1f626960,3300000, supercop-20240909

[Page version: 20241011 15:42:01]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
265712708728007
T:
jacfp127i
276782831129344
T:
kumjacfp127g
300423083931815
T:
prjfp127i
308053145232480
T:
hecfp127i
344513456334785
T:
curve2251
368403693337105
T:
gls254
374813802238684
T:
jacfp128bk
380993815738250
T:
gls254prot
431924373844734
T:
prjfp128bk
433224393244929
T:
hecfp128bk
434094413244985
T:
hecfp128i
436884428645081
T:
hecfp128fkt
481524821948305
T:
k277taa
528915303953216
T:
k298
679566880069799
T:
gls1271
720657213572268
T:
k277mon
113964114142114372
T:
kumfp127g
117280118077118705
T:
kummer
149508149629149768
T:
kumfp128g
154961155216155596
T:
curve25519
245216246013247815
T:
ed448goldilocks
250674251693252828
T:
nistp256
342924346699350521
T:
sclaus1024
135308913663411372019
T:
ed521gs
149565015033141514464
T:
nist521gs
202581720324392044292
T:
claus
220330122180012232498
T:
sclaus2048
Cycles to compute a shared secret
25%50%75%system
363183636136405
T:
gls254
380253808238136
T:
gls254prot
481464821448256
T:
k277taa
527845289752967
T:
k298
720097207772174
T:
k277mon
115395115625115893
T:
jacfp128bk
117227117813118326
T:
kummer
117717117980118276
T:
kumfp127g
119193119337119528
T:
kumjacfp127g
136207137527137729
T:
curve2251
140225140428140664
T:
prjfp128bk
144664145130145423
T:
hecfp128bk
149547149899150513
T:
hecfp128fkt
157318157408157525
T:
kumfp128g
166709167011167393
T:
curve25519
172885173414174473
T:
gls1271
175281175888176895
T:
jacfp127i
220443221402222555
T:
prjfp127i
223134223954224661
T:
hecfp127i
321908322459324676
T:
hecfp128i
345274349800355622
T:
sclaus1024
854106857492860192
T:
nistp256
865730871250874709
T:
ed448goldilocks
136214013668461369879
T:
ed521gs
150023515022581512009
T:
nist521gs
203773420388922043769
T:
claus
223504322829702285604
T:
sclaus2048