VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; K10 32nm (300f10); 2011 AMD A8-3850; 4 x 2900MHz; hydra5, supercop-20241022

[Page version: 20241109 15:41:12]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: old (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
300853029030545
T:
jacfp127i
328213299633262
T:
kumjacfp127g
349183507535329
T:
prjfp127i
354333559035858
T:
hecfp127i
473844782348214
T:
jacfp128bk
561775647056888
T:
hecfp128fkt
561755652556911
T:
hecfp128bk
570925742657863
T:
prjfp128bk
573185767758151
T:
hecfp128i
105628106900108192
T:
gls1271
120083120193120348
T:
kumfp127g
206811206863206960
T:
kumfp128g
214384214387214451
T:
curve25519
267970270204272872
T:
sclaus1024
281200282041282456
T:
surf127eps
307698308427308798
T:
ed448goldilocks
324040335081347303
T:
hector
403945404237407861
T:
nistp256
414401414648415137
T:
kummer
706038709489710440
T:
surf2113
886395888659890882
T:
curve2251
124629912561651266924
T:
sclaus2048
150354615041281504567
T:
ed521gs
158313815861981589219
T:
claus
Cycles to compute a shared secret
25%50%75%system
121735121738121749
T:
kumfp127g
122801122810122829
T:
kumjacfp127g
153642153754153821
T:
jacfp128bk
188260188310188348
T:
prjfp128bk
193874193893193942
T:
hecfp128bk
197899197962198042
T:
jacfp127i
201102201136201162
T:
hecfp128fkt
211980211988211999
T:
kumfp128g
214348214368214370
T:
curve25519
257966257993258029
T:
prjfp127i
260163262448263755
T:
gls1271
263313263337263382
T:
hecfp127i
273122273573275812
T:
sclaus1024
278396279164280408
T:
surf127eps
414553415003415016
T:
kummer
426674426748426828
T:
hecfp128i
705200706047708132
T:
surf2113
881560888879889318
T:
curve2251
937654938114938463
T:
ed448goldilocks
108218510890571110496
T:
hector
125143812730441279746
T:
sclaus2048
139192813945451395808
T:
nistp256
150332215035541504014
T:
ed521gs
158581915862881592899
T:
claus