VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Raptor Cove (b06a2-40); 2024 Intel Core 5 210H; 4 x 2200MHz; freshwrap,big, supercop-20251222

[Page version: 20260116 16:46:37]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
189471956720672
T:
jacfp127i
194592007321709
T:
hecfp127i
198142046221577
T:
kumjacfp127g
210182190223209
T:
prjfp127i
238132397524094curve25519
247742553426159
T:
jacfp128bk
279962835429067
T:
ecfp256e
282832905329946
T:
prjfp128bk
284472921830514
T:
hecfp128i
287572963130677
T:
hecfp128bk
289392972630718
T:
hecfp128fkt
301193036330711
T:
gls254
316503170931786
T:
gls254prot
317633211232762
T:
ecfp256s
330893337633927
T:
ecfp256q
335333361833856
T:
curve2251
371423727837365nistp256
387503879638844
T:
k277taa
429834305443132
T:
k298
521645230354093
T:
kummer
608726096361057
T:
k277mon
642086442164683
T:
kumfp127g
806958110081513
T:
kumfp128g
131528132137133517
T:
ed448goldilocks
131507132256133188
T:
ecfp256i
148603149414150740
T:
ecfp256h
182139184117186437
T:
sclaus1024
576810578264580193
T:
ed521gs
756778762440767020
T:
nist521gs
923060923832924783
T:
claus
941865948290955855
T:
sclaus2048
Cycles to compute a shared secret
25%50%75%system
295062955329602
T:
gls254
314953154631599
T:
gls254prot
386343866938711
T:
k277taa
427584280742880
T:
k298
521685229553982
T:
kummer
607966089661006
T:
k277mon
656216575565896
T:
kumfp127g
660346621366444
T:
jacfp128bk
667716687967118
T:
kumjacfp127g
758257599476220
T:
prjfp128bk
759117614276534curve25519
774657767178006
T:
hecfp128bk
799128018580412
T:
hecfp128fkt
847498504385340
T:
kumfp128g
101410101853102077
T:
jacfp127i
118318118599118972
T:
ecfp256e
120529120881123397
T:
prjfp127i
120694120900121055
T:
hecfp127i
124308124725125073
T:
ecfp256i
128012128206128535
T:
ecfp256q
134181134314134433
T:
curve2251
139134139311139654nistp256
141974142317142917
T:
ecfp256h
167650167872168117
T:
hecfp128i
174354174672175064
T:
ecfp256s
187704188353190405
T:
sclaus1024
395339396637399572
T:
ed448goldilocks
576425577976579330
T:
ed521gs
757583764353767315
T:
nist521gs
923039923868925745
T:
claus
946121954589974549
T:
sclaus2048