VAMPIRE

eBACS: ECRYPT Benchmarking of Cryptographic Systems


ECRYPT II
General information:IntroductioneBASHeBASCeBAEADeBATSSUPERCOPXBXComputersArch
How to submit new software:Tipshashstreamaeaddhkemencryptsign
List of primitives measured:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
Measurements:lwcsha3hashstreamlwccaesaraeaddhkemencryptsign
List of subroutines:verifydecodeencodesortcorehashblocksxofscalarmult

Measurements of public-key Diffie–Hellman secret-sharing systems on one machine: amd64; Silvermont (406c4); 2016 Intel Atom x5-Z8350; 4 x 1440MHz; cherry, supercop-20241022

[Page version: 20241109 15:41:12]

eBATS (ECRYPT Benchmarking of Asymmetric Systems) is a project to measure the performance of public-key systems. This page presents benchmark results collected in eBATS for public-key Diffie–Hellman secret-sharing systems:

Each table row lists the first quartile of many speed measurements, the median of many speed measurements, the third quartile of many speed measurements, and the name of the primitive. Measurements with large variance are indicated in red with question marks. The symbol T: (starting with supercop-20200816) means that the SUPERCOP database at the time of benchmarking did not list constant time as a goal for this implementation. The symbol T!!! means that constant time was listed as a goal for this implementation, but that the implementation failed TIMECOP. (TIMECOP failures are not necessarily security issues; they can sometimes be resolved by, e.g., declaring that a rejection-sampling condition is safe to declassify.)

There is a separate page with more information about each Diffie–Hellman system and each implementation. Designers and implementors interested in submitting new Diffie–Hellman systems and new implementations of existing systems should read the call for submissions.


Test results

Graphs: (pkcycles,pkbytes) (scycles,pkbytes)

Cycles to generate a key pair
25%50%75%system
655536633167283
T:
jacfp127i
669426761369070
T:
kumjacfp127g
736057479576900
T:
prjfp127i
746037575577398
T:
hecfp127i
99841103660111826
T:
jacfp128bk
104907106461108555
T:
ecfp256e
109473112440120674
T:
ecfp256h
110161113256116240
T:
curve2251
109869113752117399
T:
ecfp256s
113210115373118053
T:
hecfp128i
112675115834121596
T:
hecfp128bk
113535116371120396
T:
hecfp128fkt
114674116712121177
T:
prjfp128bk
116036119700123047
T:
ecfp256q
140354142989145329
T:
gls254
186226188805190482
T:
gls1271
205793205972207210
T:
gls254prot
280514280631280735
T:
kumfp127g
287772287891288253
T:
k277taa
305984307271311105
T:
k298
422305422392422659
T:
k277mon
447370447462447716
T:
kumfp128g
448520448653449060
T:
curve25519
507429510968514844
T:
ecfp256i
552632554222555219
T:
kummer
569321571192573623
T:
surf127eps
557872572559598258
T:
hector
614692617484619416
T:
nistp256
765230766930771143
T:
ed448goldilocks
775452782604790392
T:
sclaus1024
113972811490521158785
T:
surf2113
366042436642333670268
T:
ed521gs
380089238276033852737
T:
sclaus2048
432392343275034331834
T:
nist521gs
465820846708584682649
T:
claus
Cycles to compute a shared secret
25%50%75%system
135022139976141170
T:
gls254
205346205510205732
T:
gls254prot
283484283597283704
T:
kumfp127g
286723286870287056
T:
kumjacfp127g
287586287682287868
T:
k277taa
305773307260308558
T:
k298
318167319690321721
T:
jacfp128bk
370950372472375579
T:
hecfp128bk
374071375560377850
T:
prjfp128bk
384597386599388921
T:
hecfp128fkt
422067422118422226
T:
k277mon
422741428187428879
T:
curve2251
435283436147436837
T:
gls1271
444110446631449568
T:
jacfp127i
448399448467448685
T:
curve25519
457756457845458105
T:
kumfp128g
480613481476483564
T:
ecfp256e
502875504257507193
T:
ecfp256q
507827509204511710
T:
ecfp256i
523051524844527414
T:
prjfp127i
534135535433537490
T:
hecfp127i
552232554002555028
T:
kummer
567800569879572208
T:
surf127eps
601746604035606459
T:
ecfp256h
625568627741630215
T:
ecfp256s
791641795213796891
T:
sclaus1024
808724810334816047
T:
hecfp128i
112907511415681155000
T:
surf2113
191481319229051932908
T:
hector
208936220955542099816
T:
nistp256
264779126495682656595
T:
ed448goldilocks
365961236611063665228
T:
ed521gs
377261037864643853377
T:
sclaus2048
431691143231994326289
T:
nist521gs
465536646744974688304
T:
claus